Simplified stage-based modeling of multi-stage stochastic programming problems

Ronald Hochreiter
Department of Statistics and Decision Support Systems, University of Vienna

11th International Conference on Stochastic Programming (SPXI).
Vienna, Austria. August 2007.
Overview

- Introduction: Multi-stage decision process optimization
- Multi-stage stochastic programming - Main issues
- Modeling multi-stage stochastic programming problems
- Simplified stage-based multi-stage modeling
- Modeling Examples
- Conclusion
Multi-stage Stochastic Decision Process

Discrete-time decision processes considered:

- **Sequence of decisions.** At each decision stage $t = 0, \ldots, T$ do:
 - Observe the realization of random variable ξ_t.
 - Take a decision x_t based on all observed values ξ_0, \ldots, ξ_t.

- **At stage T.** Sequence of decisions $x = (x_0, \ldots, x_T)$ with realizations $\xi = (\xi_0, \ldots, \xi_T)$ leads to cost $f(x, \xi)$.

- **Goal.** Find a sequence of decisions $x(\xi)$, which minimizes a functional (commonly the expectation) of the cost $f(x(\xi), \xi)$.

Multi-stage: At least one intermediary stage between root and terminal stage.
Multi-stage Stochastic Programming

\[
\begin{align*}
\text{minimize } & \quad x : \quad F \left(f \left(x(\xi), \xi \right) \right) \\
\text{subject to } & \quad (x(\xi), \xi) \in \mathcal{X} \\
& \quad x \in \mathcal{N}
\end{align*}
\]

- Multi-variate, multi-stage stochastic process ξ.
- Constraint-Set \mathcal{X} defining feasible (x, ξ).
- Set \mathcal{N} of functions $\xi \mapsto x$, such that x_t is based on realizations up to stage $t (\xi_0, \ldots, \xi_t)$ only (non-anticipativity constraints).

Remark. The scenario tree approximation of the underlying stochastic process will inherently fulfill the non-anticipativity constraints.
Multi-stage stochastic programming - Main issues

Issue One - Modeling underlying decision problem - Multi-stage models and scenario model (tree) handling are considered to be too complex to be used in companies for real-world applications. Communication of tree-based models to non-experts is complicated.

Issue Two - Modeling underlying uncertainty - A discrete tree approximation of the underlying stochastic process has to be generated in order to numerically compute a solution. The quality of the scenario model severely affects the quality of the solution (garbage in → garbage out).

Both issues are valid since the inception of stochastic programming. However, are they properly solved?
Modeling multi-stage stochastic programming problems (1)

Most stochastic programming modeling environments summarized in:

Some recent developments were reported by:

- Lopes, L. - PhD, Northwestern 2003
- van Delft, Ch. and Vial, J.-P. - *Automatica* 2004
- Fourer, R. and Lopes, L. - *Optimization Online* 2006
Modeling multi-stage stochastic programming problems (2)

Design philosophy. Complete decoupling of scenario tree modeling and handling from the decision problem modeling process. Three-layered approach: explicit decoupling of modeling and (scenario) tree handling.

1. **Decision problem layer.** Decision problem modeler only concerned with actions/decisions at stages.

2. **Scenario tree layer.** Creating a scenario tree which optimally represents the subjective beliefs of the decision taker at each node.

3. **Data layer.** Data structures, how to (memory-)optimally store large trees, and access ancestor tree nodes fast, . . .

Design goal. Focus on usability, and model readability.
Three-layered approach (1)
Three layered approach (2)

Scenario Tree Handling. Need for a coherent interface to handle scenario trees. Still no common standard for representing discretized stochastic processes available. Lack of commercial interest?!

Node-based vector/matrix data format of a scenario tree:

\[V(n, d) \]
\[A(n) \]
\[P(n) \]
\[Z(n) \]
\[T(n) \]

\[d \]-dimensional value of node \(n \)
ancestor node of node \(n \)
probability to reach node \(n \) from its ancestor
probability of scenario terminating at node \(n \)
stage of node \(n \)

Underlying concept. Node-sets \(N_t \), include all tree nodes of stage \(t \). Deterministic root-node and root-stage indexed with 0.
A simple multi-stage model

Stylized multi-stage stochastic programming example from (Heitsch et al., 2006):

- Optimal purchase over time under cost uncertainty,
- Uncertain prices are given by σ_t.
- Decisions x_t: amounts to be purchased at each time period t.
- Minimize expected costs such that prescribed amount a is achieved at T.

\[
\begin{align*}
\text{minimize} & \quad \mathbb{E} \left(\sum_{t=1}^{T} \xi_t x_t \right) \\
\text{subject to} & \quad s_t - s_{t-1} = x_t \forall t = 2, \ldots, T \\
& \quad s_1 = 0, s_T = a, x_t \geq 0, s_t \geq 0,
\end{align*}
\]

where s_t is a state variable containing the amount at time t.
A simple multi-stage model MusMod - formulation

deterministic a: T;
stochastic V, x, s: 0..T;
stochastic nonAnticitpativity: 1..T;
stochastic constraintRootStage: 0;
stochastic constraintTerminalStage: T;

param a, V;
var x >= 0, s >= 0;

maximize objFunc: E(V * x, 0..T);
subject to nonAnticitpativity: s - s(-1) = x;
subject to constraintRootStage: s = 0;
subject to constraintTerminalStage: s = a;
Additional keywords (for parameters, variables, and constraints)

- deterministic `variable-name: stage-set;`

- stochastic `variable-name: stage-set;`

- Stochastic parameters are defined on the underlying tree `node` structure.
- Deterministic parameters are defined on the `stage` structure, i.e. same value for all nodes in the respective stage.

Remark. Stage-sets may be single stages, ranges, or lists.
MusMod - AMPL extension - direct modeling changes

Additional functions:

- stochastic variables (recourse)
 \[\text{variable-name}(\text{recourse-depth}, \text{parameters}) \].
 Recourse-depth equals number of stages, commonly -1.

- expectation \[E(\text{stochastic-variable-name}, \text{stage-set}) \].

Possible extensions:

- quantiles \[Q(\text{stochastic-variable-name}, \text{stage}, \alpha) \].

- probabilistic constraints
 \[P(\text{stochastic-variable-name}, \text{stage}, \leq, \alpha) \].
MusMod - Stage-set parsing, node-set creation

Node-sets parsing & creation.

• Add one stage-set for the whole horizon (0..T).

• Parse all stage-sets \(\mathcal{T} \) defined

 – directly with keywords stochastic and deterministic, and

 – within the objective special function \(E() \).

• For each stage-set - given one specific scenario tree - create appropriate node-sets containing all nodes of the respective stages.
Example: Simple three-stage ($t = 0,1,2$) binary tree, (uni-variate) starting value: 10. Up 1 with $p = 0.6$ and down 1 with $p = 0.4$, i.e.

\[
\begin{array}{ccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 V[n] & 10 & 11 & 9 & 12 & 10 & 10 & 8 \\
 A[n] & 0 & 0 & 1 & 1 & 2 & 2 & 2 \\
 T[n] & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
 P[n] & 1 & 0.6 & 0.4 & 0.6 & 0.4 & 0.6 & 0.4 \\
 Z[n] & 1 & 0.6 & 0.4 & 0.36 & 0.24 & 0.24 & 0.16 \\
\end{array}
\]

Node- and stage-sets: Using the above inventory example:

<table>
<thead>
<tr>
<th>Model</th>
<th>Node-Set</th>
<th>Stages</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0..T)</td>
<td>0</td>
<td>0 1 2</td>
<td>0 1 2 3 4 5 6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>2</td>
<td>3 4 5 6</td>
</tr>
<tr>
<td>1..T</td>
<td>3</td>
<td>1 2</td>
<td>1 2 3 4 5 6</td>
</tr>
</tbody>
</table>
MusMod - Conversion example - Variables and Parameters

1. Replace stochastic parameters and variables by a node-set definition, and

2. replace deterministic parameters and variables by stage-set definitions.

deterministic a: T;
stochastic V, x, s: 0..T;
param a, V;
var x >= 0, s >= 0;

param a[stageSet2], V[nodeSet0];
var x[nodeSet0] >= 0, s[nodeSet0] >= 0;
For each stochastic constraint add as many deterministic equivalent constraints as nodes in the respective node set, i.e.

```
stochastic constraintRootStage: 0;
subject to constraintRootStage: s = 0;
```

```
subject to constraintRootStage: s[0] = 0;
```
Deterministic parameters in stochastic constraints make use of the stage mapping information $T[n]$:

```plaintext
stochastic constraintTerminalStage: $T$;
subject to constraintTerminalStage: $s = a$;

subject to constraintRootStage: $s[3] = a[T[3]]$;
subject to constraintRootStage: $s[4] = a[T[4]]$;
subject to constraintRootStage: $s[5] = a[T[5]]$;
subject to constraintRootStage: $s[6] = a[T[6]]$;
```
Recourse constraints make use of the ancestor information $A[n]$. Higher depths are integrated recursively.

\[
\text{stochastic nonAnticitpativity: } 1..T; \\
\text{subject to nonAnticitpativity: } s - s(-1) = x; \\
\text{subject to nonAnticitpativity: } s[1] - s[A[1]] = x[1]; \\
\text{subject to nonAnticitpativity: } s[2] - s[A[2]] = x[2]; \\
\text{...} \\
\text{subject to nonAnticitpativity: } s[6] - s[A[6]] = x[6];
\]

Further advantage: No explicit tree formulation in the model anymore.
MusMod - Conversion example - Objective function

Objective function replacements based replacing \(E() \) by sums using the stage probabilities \(Z[n] \):

\[
\text{maximize objFunc: } E(V \ast x, 0..T);
\]

\[
\text{maximize objFunc: } \\
\quad \left(\sum_{n \in \text{nodeSet0}} Z[n] \ast (V[n] \ast x[n]) \right);
\]
Multi-stage stochastic Asset Liability Management

maximize \(x\) \[\sum_{n \in \mathcal{N}(T)} Z(n)w_n + \kappa(\gamma - \sum_{n \in \mathcal{N}(T)} \frac{Z(n)z_n}{1-\alpha})\]

subject to

\[\sum_{a \in \mathcal{A}} x_{n,a} \leq \beta = w_n\quad \forall n \in \mathcal{N}(0)\]

\[\forall a \in \mathcal{A} : x_{n,a} \leq V(n, a)x_{A(n),a} + b_{n,a} - s_{n,a}\quad \forall n \in \mathcal{N}(1..T-1)\]

\[\sum_{a \in \mathcal{A}} b_{n,a} \leq \sum_{a \in \mathcal{A}} s_{n,a}\quad \forall n \in \mathcal{N}(1..T-1)\]

\[w_n = \sum_{a \in \mathcal{A}} x_{n,a} + f_S(n)\quad \forall n \in \mathcal{N}(T)\]

\[w_n = (\sum_{a \in \mathcal{A}} V(n, a)x_{A(n),a}) + f_S(n)\quad \forall n \in \mathcal{N}(T)\]

\[z_n \geq \gamma - w_n\quad \forall n \in \mathcal{N}(T)\]

\(x_{n,a}\) amount of money held in each asset \(a\)

\(b_{n,a}, s_{n,a}\) amount bought and sold

\(w_n\) current wealth

\(f_t\) (deterministic) liabilities

\(\beta\) initial budget

\(\kappa\) risk aversion parameter

\(\alpha\) AVaR quantile level

\(z_n, \gamma\) auxiliary variables (AVaR)
maximize \(\mathbb{E}(w_T) + \kappa(\gamma - \mathbb{E}(\frac{z_t}{1-\alpha})) \)

subject to

\[
\sum_{a \in A} x_a \leq \beta = w \quad (t = 0)
\]

\[
\forall a \in A : x_a \leq V_a x_a^{(-1)} + b_a - s_a \quad (t = 1, \ldots, T - 1)
\]

\[
\sum_{a \in A} b_a \leq \sum_{a \in A} s_a \quad (t = 1, \ldots, T - 1)
\]

\[
w = \sum_{a \in A} x_a + f \quad (t = 1, \ldots, T - 1)
\]

\[
w = \sum_{a \in A} V_a x_a^{(-1)} + f \quad (t = T)
\]

\[
z \geq \gamma - w \quad (t = T)
\]
ALM example - Simplified notation (AMPL extension, 1)

param alpha; param beta; param kappa;
param assets; set ASSET := 1 .. assets;
param V{ASSET};

var x{ASSET} >= 0, b{ASSET} >= 0, s{ASSET} >= 0, w >= 0;
var f; var g; var z >= 0;

maximize objFunc: E(wealth, T) + kappa * (g - (E(z / (1 - alpha), T)));

subject to cInitBudget: (sum{a in ASSET} x[a]) <= beta;
subject to cInitWealth: (sum{a in ASSET} x[a]) == w;
subject to cTradeStages{a in ASSET}: x[a] <= (V[a] * x(-1, a)) + b[a] - s[a];
subject to cBuySell: (sum{a in ASSET} b[a]) <= (sum{a in ASSET} s[a]);
subject to cNodeWealth: w <= (sum{a in ASSET} x[a]) + f;
subject to cFinalStageWealth: w <= (sum{a in ASSET} V[a] * x(-1, a)) + f;
subject to cAVaR: z >= g - w;
ALM example - Simplified notation (AMPL extension, 2)

deterministic f: 1..T;

stochastic cInitBudget, cInitWealth: 0;
stochastic x, w: 0..T;
stochastic b, s: 1..T-1;
stochastic V, cTradeStages, cBuySell, cNodeWealth: 1..T;
stochastic z, cAVaR, cFinalStageWealth: T;
MusMod - Workflow

Model / Tree consistency check - Examples:

- Number of stages smaller than highest recourse-depth.
- Equal/Odd number of stages required by model.
Conclusion

• Multi-stage modeling completely decoupled from the scenario tree handling (stage-based modeling view).

• AMPL extension implemented as Web application.

• Framework for teaching and selling multi-stage models.

• Guideline for designing stochastic programming (XML) formats.

Contact & More Information

Web http://www.compmath.net/ronald.hochreiter/
Email ronald.hochreiter@compmath.net